

All dimensions are in mm; Drawing not to scale.

Motor - sensor configurations					
	PMSM	BLDC	DC BRUSH	$\begin{aligned} & \text { STEP } \\ & \text { (2-ph) } \end{aligned}$	$\begin{aligned} & \text { STEP } \\ & \text { (3-ph) } \end{aligned}$
Incr. Encoder	(J)		(5)	(J)	
Incr. Encoder + Dig. Hall	(3)	(3)			
Digital halls only	(J)				
Tacho			(J)		
Open-loop (no sensor)				(5)	(5)
Open-loop (with step loss detection using incr. enc.)				(3)	(3)
Open-loop (with enc. on load)				(1)	(J)

- Features

- Motion controller and drive in a single compact unit
- Universal solution for control of rotary and linear brushless, brushed and 2 or 3-phase step motors
- CANopen communication protocol (CiA 301v4.2, CiA 305v2.213 and 402v3.0)
- Various modes of operating supported: Position or Speed Profile, interpolated Cyclic Synchronous Position (CSP) mode, external reference mode (Position, Speed, Torque), 35 homing modes
- Motor supply: 11-50V. Logic supply: 9-36V
- Output current: 4A cont. (BLDC mode); 10A PEAK , up to 100 KHz PWM
- 5 opto-isolated digital inputs, $12-36 \mathrm{~V}, \mathrm{PNP} / \mathrm{NPN}$ compatible: 2 for limit switches, 3 general-purpose
- 5 digital outputs, $5-36 \mathrm{~V}, 0.5 \mathrm{~A}$, NPN open-collector: Error, 1 Motor brake [2A], 3 general-purpose [0.5A]
- Mini USB ${ }^{1}$ \& CAN-bus 2.0B interfaces
- $127 \mathrm{~h} / \mathrm{w}$ addresses selectable by h/w DIP switch
- NTC/PTC analogue Motor Temperature sensor input
${ }^{1}$ Mini USB cable not provided

Name First edition EP January 16, 2018	Document template: P099.TQT.564.0001	Last edition January 16, 2018	Visa :
(5) TECHNOSOFT	Title of document Udrive200 PRODUCT DATA SHEET	$\begin{aligned} & \hline N^{\circ} \text { document } \\ & \text { P030.400.E101.DSH.10A } \end{aligned}$	Page: 1 of 4

Connectors Description				
	Pin	Name	Type	Description
7	1	GND	-	Negative return (ground) of the power supply
	2	+V ${ }_{\text {log }}$	I	Positive terminal of the logic supply input: 12 to $36 V_{D C}$
	3	$+\mathrm{V}_{\text {MOT }}$	I	Positive terminal of the motor supply: 12 to 50 V d.
	4	Earth	-	Earth connection
	Pin	Name	Type	Description
N	1	OUTO/M.BRK	0	5-36V 2A, digital output used for an electromechanical brake, NPN open-collector/TTL pull-up
	2	OUT5	0	5-36V 0.5A, general-purpose digital output, NPN open-collector/TTL pull-up
	3	OUT4	0	5-36V 0.5A, general-purpose digital output, NPN open-collector/TTL pull-up
	4	OUT1	0	5-36V 0.5A, general-purpose digital output, NPN open-collector/TTL pull-up
	5	OUT2/Error	0	12-36V 0.5A, drive Error output, active low, NPN open-collector/TTL pull-up. Also drives the red Error LED.
	6	CAN Hi	I/O	CAN-Bus positive line(dominant high)
	7	CAN Lo	1/0	CAN-Bus negative line (dominant low)
	8	GND	-	Return ground for I/O and CAN pins
	Pin	Name	Type	Description
¢	1	IN2+/LSP+	1	12-36V digital PNP/NPN opto-isolated input. Positive limit switch function, positive input
	2	IN2-ILSP-	I	12-36V digital PNP/NPN opto-isolated input. Positive limit switch function, negative input
	3	IN3+/LSN+	I	12-36V digital PNP/NPN opto-isolated input. Negative limit switch function, positive input
	4	IN3-ILSN-	I	12-36V digital PNP/NPN opto-isolated input. Negative limit switch function, negative input
	5	IN0+	1	12-36V general-purpose digital PNP/NPN opto-isolated positive input.
	6	INO-	1	12-36V general-purpose digital PNP/NPN opto-isolated negative input.
	7	IN1+	1	12-36V general-purpose digital PNP/NPN opto-isolated positive input.
	8	IN1-	1	12-36V general-purpose digital PNP/NPN opto-isolated negative input.
	9	Ena+/IN4+	1	12-36V digital PNP/NPN opto-isolated input. Drive enable function, positive input
	10	Ena-I IN4-	1	12-36V digital PNP/NPN opto-isolated input. Drive enable function, negative input
	11	FDBK	1	Analogue input, 12 -bit, $0-5 \mathrm{~V}$. Used to read an analogue position or speed feedback (as tacho), or used as general purpose analogue input.
	12	GND	-	Negative return (ground) of the motor supply
	Pin	Name	Type	Description
\pm	1	GND	-	Return ground
	2	Pulse+	1	Pulse+ differential input; has 120Ω resistor between pins 2 and 3
	3	Pulse-	1	Pulse- differential input; has 120Ω resistor between pins 2 and 3
	4	Dir+	1	Direction+ differential input; has 120Ω resistor between pins 4 and 5
	5	Dir-	1	Direction- differential input; has 120Ω resistor between pins 4 and 5
	6	Temp Mot	1	NTC/PTC input. Used to read an analog temperature value

Electrical characteristics

All parameters measured under the following conditions (unless otherwise specified):

- $\mathrm{VLOG}=24 \mathrm{VDC} ; \mathrm{VMOT}=48 \mathrm{VDC}$
- Supplies start-up / shutdown sequence: -any-
- Load current (sinusoidal amplitude / continuous BLDC, DC, stepper) $=4 \mathrm{~A}$

Operating Conditions		Min.	Typ.	Max.	Units
Ambient temperature		0		$40^{1,3}$	${ }^{\circ} \mathrm{C}$
Ambient humidity	Non-condensing	0		90	\%Rh
Altitude / pressure ${ }^{2}$	Altitude (vs. sea level)	-0.1	$0 \div 2.5$	${ }^{2}$	Km
	Ambient Pressure	0^{2}	$0.75 \div 1$	10.0	atm
Storage Conditions		Min.	Typ.	Max.	Units
Ambient temperature		-40		105	${ }^{\circ} \mathrm{C}$
Ambient humidity	Non-condensing	0		100	\%Rh
Ambient Pressure		0		10.0	atm
ESD capability (Human body model)	Not powered; applies to any accessible part			± 0.5	kV
	Original packaging			± 15	kV
Mechanical Mounting		Min.	Typ.	Max.	Units
Airflow		natu	conve	${ }^{3}$, c	

${ }^{1}$ Operating temperature at higher temperatures is possible with reduced current and power ratings ${ }^{2}$ Udrive can be operated in vacuum (no altitude restriction), but at altitudes over $2,500 \mathrm{~m}$, current and power rating are reduced due to thermal dissipation efficiency.

Name First edition EP January 16, 2018	Document template: P099.TQT.564.0001	Last edition January 16, 2018	Visa :
TECHNOSOFT	Title of document Udrive200 PRODUCT DATA SHEET	$\begin{aligned} & \hline \mathrm{N}^{\circ} \text { document } \\ & \text { P030.400.E101.DSH.10A } \end{aligned}$	Page: 2 of 4

Digital Inputs - opto-isolated(IN0, IN1, IN2/LSP, IN3/LSN, IN4) ${ }^{2}$			Min.	Typ.	Max.	Units
Mode compliance	PNP		Connect negative pin to GND and positive pin to signal			
	NPN		Connect positive pin to supply and connect negative pin to signal			
Default state	Input floating (wiring disconnected)		Logic Low			
Input voltage	Logic LOW		0		36	V
	Logic HIGH		5		36	
	Absolute maximum		-7		50	
Input current	Logic LOW		0		50	mA
	Logic HIGH		8	10	12	
	Absolute maximum		-20		20	
Input frequency				2		kHz
Minimum pulse				500		$\mu \mathrm{s}$
ESD protection	Human body model		± 15			kV
Digital Outputs (OUT0, OUT1, OUT2/Error, OUT4, OUT5)			Min.	Typ.	Max.	Units
Mode compliance	$\begin{aligned} & \text { All outputs (OUTO, 1, 4,5 } \\ & \text { OUT2/Error) } \\ & \hline \end{aligned}$		NPN 24V			
Default state	Not supplied (+ + Log floating or to GND)		High-Z (floating)			
	Immediately after powerup	OUT0, OUT1	Logic "HIGH"			
		OUT2/Error	Logic "LOW"			
	$\begin{array}{\|l\|} \hline \text { Normal } \\ \text { operation } \\ \hline \end{array}$	OUT0, OUT1, OUT2/Error	Logic "HIGH"			
Output voltage	$\begin{aligned} & \text { Logic "LOW"; output current = } \\ & 0.5 \mathrm{~A} \end{aligned}$			0.3	0.65	V
	Logic "HIGH"; output current $=0$, no load		3.6			
			Vlog		5	
	Logic "HIGH", external load to $+\mathrm{V}_{\text {Log }}$		-0.5		$\mathrm{V}_{\text {Log }}+0.5$	
	Absolute maximum, continuous		-1		$\mathrm{V}_{\text {LOG }}+1$	
			-1		V Log^{+1}	
Output current	Logic "LOW", sink current, continuous	OUT2/Error, OUT1,4,5			0.5	A
		OUTO			2	A
	Logic "HIGH", source current; external load to GND; Vout >= 2.0V	OUT2/Error, OUT1,4,5			3	mA
	Logic "HIGH", leakage current; external load to $+\mathrm{V}_{\text {LOG }} ; \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {LOG }} \max =$ 40V			0.1		mA
Minimum pulse width			2			
ESD protection	Human body mo	odel	± 15			kV
Digital Hall Inputs (Hall1, Hall2, Hall3)			Min.	Typ.	Max.	Units
Mode compliance			TTL / CMOS / Open-collector			
Default state	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Input floating } \\ \text { (wiring disconnected) } \end{array} \\ \hline \end{array}$		Logic HIGH			
Input voltage	Logic "LOW"			0	0.8	V
	Logic "HIGH"		2	5		
	Floating voltage (not connected)			4.4		
	$\begin{aligned} & \text { Absolute maximum, surge } \\ & \text { (duration } \leq 1 \mathrm{~s} \text {) } \end{aligned}$		-10		+15	
Input current	Logic "LOW"; Pull to GND				1.2	mA
	Logic "HIGH"; Internal 4.7K Ω pull-up to +5		0	0	0	
Minimum pulse width			2			$\mu \mathrm{s}$
ESD protection	Human body mo	odel	± 5			kV

Feedback 1 \&2 inputs (A1+, A1-, B1+, B1-, Z1+, Z1-, P+, P-, D+, D-) ${ }^{1}$		Min.	Typ.	Max.	Units
Differential mode compliance	For full RS422 compliance, see ${ }^{2}$	TIA/EIA-422-A			
Input voltage	Hysteresis	± 0.06	± 0.1	± 0.2	V
	Differential mode	-14		+14	
	Common-mode range (A+ to GND, etc.)	-11		+14	
Input impedance, differential			120		Ω
Input frequency	Differential mode	0		10	MHz
Minimum pulse width	Differential mode	50			ns
Analog 0...5V Inputs (REF, FDBK)		Min.	Typ.	Max.	Units
Input voltage	Operational range	0		5	V
	Absolute maximum values, continuous	-16		+23	
	Absolute maximum, surge (duration $\leq 1 \mathrm{~s})^{\dagger}$			± 36	
Input impedance	To GND		15		k Ω
Resolution		12			bits
Integral linearity				± 2	bits
Offset error			± 2	± 10	bits
Gain error			$\pm 1 \%$	$\pm 3 \%$	\% FS ${ }^{2}$
Bandwidth (-3Db)	Software selectable	0		1	kHz
ESD protection	Human body model	± 2			kV

CAN-Bus		Min.	Typ.	Max.	Units
Compliance		ISO11898, CiA-301v4.2 \& 402v3.0			
Bit rate	Software selectable	125		1000	Kbps
Bus length	1Mbps			25	m
	500Kbps			100	
	$\leq 250 \mathrm{Kbps}$			250	
Resistor	Between CAN-Hi, CAN-Lo	none on-board			
Node addressing	by hardware through SW1	$1 \div 127$; 255 (all bits 0)			
	by software using EasySetup	1- 255 (numbers above 127 will be considered as LSS nonconfigured)			
ESD protection	Human body model	± 15			kV
Supply Output (+5V)		Min.	Typ.	Max.	Units
Output voltage	Current sourced $=250 \mathrm{~mA}$	4.8	5	5.2	V
Output current				500	mA
Short-circuit		Protected			
Over-voltage		Protected			
ESD protection	Human body model	± 15			kV

[^0] conditions for extended periods may affect device reliability.

[^1]2 "FS" stands for "Full Scale"

Name First edition EP January 16, 2018	Document template: P099.TQT.564.0001	Last edition January 16, 2018	Visa :
(5) TECHNOSOFT	Title of document Udrive200 PRODUCT DATA SHEET	$\begin{aligned} & \hline N^{\circ} \text { document } \\ & \text { P030.400.E101.DSH.10A } \end{aligned}$	Page: 4 of 4

All dimensions are in mm; Drawing not to scale.

Motor - sensor configurations					
	PMSM	BLDC	DC BRUSH	$\begin{aligned} & \text { STEP } \\ & \text { (2-ph) } \end{aligned}$	$\begin{aligned} & \text { STEP } \\ & \text { (3-ph) } \end{aligned}$
Incr. Encoder	(J)		(5)	(J)	
Incr. Encoder + Dig. Hall	(3)	(3)			
Digital halls only	(J)				
Tacho			(J)		
Open-loop (no sensor)				(5)	(5)
Open-loop (with step loss detection using incr. enc.)				(3)	(3)
Open-loop (with enc. on load)				(1)	(J)

- Features

- Motion controller and drive in a single compact unit
- Universal solution for control of rotary and linear brushless, brushed and 2 or 3-phase step motors
- CANopen communication protocol (CiA 301v4.2, CiA 305v2.213 and 402v3.0)
- Various modes of operating supported: Position or Speed Profile, interpolated Cyclic Synchronous Position (CSP) mode, external reference mode (Position, Speed, Torque), 35 homing modes
- Motor supply: 11-50V. Logic supply: 9-36V
- Output current: 8A cont. (BLDC mode); 21A PEAK , up to 100 KHz PWM
- 5 opto-isolated digital inputs, 12-36V, PNP/NPN compatible: 2 for limit switches, 3 general-purpose
- 5 digital outputs, $5-36 \mathrm{~V}, 0.5 \mathrm{~A}$, NPN open-collector: Error, 1 Motor brake [2A], 3 general-purpose [0.5A]
- Mini USB ${ }^{1}$ \& CAN-bus 2.0B interfaces
- $127 \mathrm{~h} / \mathrm{w}$ addresses selectable by h/w DIP switch
- NTC/PTC analogue Motor Temperature sensor input
${ }^{1}$ Mini USB cable not provided

| Name
 EP | First edition
 January 16,2018 | Document template: P099.TQT.564.0001 | Last edition
 January 16,2018 |
| :--- | :--- | :--- | :--- | :--- |
| | Tisa : | | |
| TECHNOSOFT | Udrive400 | No document
 P030.400.E201.DSH.10A | |

Electrical characteristics

All parameters measured under the following conditions (unless otherwise specified):

- $\quad \mathrm{VLOG}=24 \mathrm{VDC} ; \mathrm{VMOT}=48 \mathrm{VDC}$
- Supplies start-up / shutdown sequence: -any-
- Load current (sinusoidal amplitude / continuous BLDC, DC, stepper) = 4A

Operating Conditions		Min.	Typ.	Max.	Units
Ambient temperature		0		$40^{1,3}$	${ }^{\circ} \mathrm{C}$
Ambient humidity	Non-condensing	0		90	\%Rh
Altitude / pressure ${ }^{2}$	Altitude (vs. sea level)	-0.1	$0 \div 2.5$	${ }^{2}$	Km
	Ambient Pressure	0^{2}	$0.75 \div 1$	10.0	atm
Storage Conditions		Min.	Typ.	Max.	Units
Ambient temperature		-40		105	${ }^{\circ} \mathrm{C}$
Ambient humidity	Non-condensing	0		100	\%Rh
Ambient Pressure		0		10.0	atm
ESD capability (Human body model)	Not powered; applies to any accessible part			± 0.5	kV
	Original packaging			± 15	kV
Mechanical Mounting		Min.	Typ.	Max.	Units
Airflow		natu	conve	${ }^{3}$, c	

${ }^{1}$ Operating temperature at higher temperatures is possible with reduced current and power ratings ${ }^{2}$ Udrive can be operated in vacuum (no altitude restriction), but at altitudes over $2,500 \mathrm{~m}$, current and power rating are reduced due to thermal dissipation efficiency.

Name First edition EP January 16, 2018	Document template: P099.TQT.564.0001	Last edition January 16, 2018	Visa :
TECHNOSOFT	Title of document Udrive400 PRODUCT DATA SHEET	$\begin{array}{ll} \hline N^{\circ} \text { document } & \\ \text { P030.400.E201.DSH.10A } & \\ & \text { Page: } 2 \text { of } 4 \end{array}$	

Digital Inputs - opto-isolated(IN0, IN1, IN2/LSP, IN3/LSN, IN4) ${ }^{2}$			Min.	Typ.	Max.	Units
Mode compliance	PNP		Connect negative pin to GND and positive pin to signal			
	NPN		Connect positive pin to supply and connect negative pin to signal			
Default state	Input floating (wiring disconnected)		Logic Low			
Input voltage	Logic LOW		0		36	V
	Logic HIGH		5		36	
	Absolute maximum		-7		50	
Input current	Logic LOW		0		50	mA
	Logic HIGH		8	10	12	
	Absolute maximum		-20		20	
Input frequency				2		kHz
Minimum pulse				500		$\mu \mathrm{s}$
ESD protection	Human body model		± 15			kV
Digital Outputs (OUT0, OUT1, OUT2/Error, OUT4, OUT5)			Min.	Typ.	Max.	Units
Mode compliance	$\begin{aligned} & \text { All outputs (OUTO, 1, 4,5 } \\ & \text { OUT2/Error) } \\ & \hline \end{aligned}$		NPN 24V			
Default state	Not supplied (+ + Log floating or to GND)		High-Z (floating)			
	Immediately after powerup	OUT0, OUT1	Logic "HIGH"			
		OUT2/Error	Logic "LOW"			
	$\begin{array}{\|l\|} \hline \text { Normal } \\ \text { operation } \\ \hline \end{array}$	OUT0, OUT1, OUT2/Error	Logic "HIGH"			
Output voltage	$\begin{aligned} & \text { Logic "LOW"; output current = } \\ & 0.5 \mathrm{~A} \end{aligned}$			0.3	0.65	V
	Logic "HIGH"; output current $=0$, no load		3.6			
			Vlog		5	
	Logic "HIGH", external load to $+\mathrm{V}_{\text {Log }}$		-0.5		$\mathrm{V}_{\text {Log }}+0.5$	
	Absolute maximum, continuous		-1		$\mathrm{V}_{\text {LOG }}+1$	
			-1		V Log^{+1}	
Output current	Logic "LOW", sink current, continuous	OUT2/Error, OUT1,4,5			0.5	A
		OUTO			2	A
	Logic "HIGH", source current; external load to GND; Vout >= 2.0V	OUT2/Error, OUT1,4,5			3	mA
	Logic "HIGH", leakage current; external load to $+\mathrm{V}_{\text {LOG }} ; \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {LOG }} \max =$ 40V			0.1		mA
Minimum pulse width			2			
ESD protection	Human body mo	odel	± 15			kV
Digital Hall Inputs (Hall1, Hall2, Hall3)			Min.	Typ.	Max.	Units
Mode compliance			TTL / CMOS / Open-collector			
Default state	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Input floating } \\ \text { (wiring disconnected) } \end{array} \\ \hline \end{array}$		Logic HIGH			
Input voltage	Logic "LOW"			0	0.8	V
	Logic "HIGH"		2	5		
	Floating voltage (not connected)			4.4		
	$\begin{aligned} & \text { Absolute maximum, surge } \\ & \text { (duration } \leq 1 \mathrm{~s} \text {) } \end{aligned}$		-10		+15	
Input current	Logic "LOW"; Pull to GND				1.2	mA
	Logic "HIGH"; Internal 4.7K Ω pull-up to +5		0	0	0	
Minimum pulse width			2			$\mu \mathrm{s}$
ESD protection	Human body mo	odel	± 5			kV

$\begin{aligned} & \text { Feedback } 1 \text { \&2 inputs (A1+, A1-, B1+, B1-, Z1+, } \\ & \text { Z1-, P+, P-, D+, D- }{ }^{1} \end{aligned}$		Min.	Typ.	Max.	Units
Differential mode compliance	For full RS422 compliance, see ${ }^{2}$	TIA/EIA-422-A			
Input voltage	Hysteresis	± 0.06	± 0.1	± 0.2	V
	Differential mode	-14		+14	
	Common-mode range (A+ to GND, etc.)	-11		+14	
Input impedance, differential			120		Ω
Input frequency	Differential mode	0		10	MHz
Minimum pulse width	Differential mode	50			ns
Analog 0...5V Inputs (REF, FDBK)		Min.	Typ.	Max.	Units
Input voltage	Operational range	0		5	V
	Absolute maximum values, continuous	-16		+23	
	Absolute maximum, surge (duration $\leq 1 \mathrm{~s}$) ${ }^{\dagger}$			± 36	
Input impedance	To GND		15		k Ω
Resolution		12			bits
Integral linearity				± 2	bits
Offset error			± 2	± 10	bits
Gain error			$\pm 1 \%$	$\pm 3 \%$	\% FS ${ }^{2}$
Bandwidth (-3Db)	Software selectable	0		1	kHz
ESD protection	Human body model	± 2			kV

CAN-Bus		Min.	Typ.	Max.	Units
Compliance		ISO11898, CiA-301v4.2 \& 402v3.0			
Bit rate	Software selectable	125		1000	Kbps
Bus length	1Mbps			25	m
	500Kbps			100	
	<250Kbps			250	
Resistor	Between CAN-Hi, CAN-Lo	none on-board			
Node addressing	by hardware through SW1	$1 \div 127 ; 255$ (all bits 0)			
	by software using EasySetup	1- 255 (numbers above 127 will be considered as LSS nonconfigured)			
ESD protection	Human body model	± 15			kV
Supply Output (+5V)		Min.	Typ.	Max.	Units
Output voltage	Current sourced $=250 \mathrm{~mA}$	4.8	5	5.2	V
Output current				500	mA
Short-circuit		Protected			
Over-voltage		Protected			
ESD protection	Human body model	± 15			kV

[^2] conditions for extended periods may affect device reliability.

[^3]2 "FS" stands for "Full Scale"

Name First edition EP January 16, 2018	Document template: P099.TQT.564.0001	Last edition January 16, 2018	Visa :
TECHNOSOFT	Title of document Udrive400 PRODUCT DATA SHEET	$\begin{aligned} & \hline N^{\circ} \text { document } \\ & \text { P030.400.E201.DSH.10A } \end{aligned}$	Page: 4 of 4

All dimensions are in mm; Drawing not to scale.

Motor - sensor configurations					
	PMSM	BLDC	DC BRUSH	$\begin{aligned} & \text { STEP } \\ & \text { (2-ph) } \end{aligned}$	$\begin{aligned} & \text { STEP } \\ & \text { (3-ph) } \end{aligned}$
Incr. Encoder	(J)		(5)	(J)	
Incr. Encoder + Dig. Hall	(3)	(3)			
Digital halls only	(J)				
Tacho			(J)		
Open-loop (no sensor)				(5)	(5)
Open-loop (with step loss detection using incr. enc.)				(3)	(3)
Open-loop (with enc. on load)				(1)	(J)

- Features

- Motion controller and drive in a single compact unit
- Universal solution for control of rotary and linear brushless, brushed and 2 or 3-phase step motors
- CANopen communication protocol (CiA 301v4.2, CiA 305v2.213 and 402v3.0)
- Various modes of operating supported: Position or Speed Profile, interpolated Cyclic Synchronous Position (CSP) mode, external reference mode (Position, Speed, Torque), 35 homing modes
- Motor supply: 11-90V. Logic supply: 9-36V
- Output current: 6A cont. (BLDC mode); 21A PEAK , up to 100 KHz PWM
- 5 opto-isolated digital inputs, 12-36V, PNP/NPN compatible: 2 for limit switches, 3 general-purpose
- 5 digital outputs, $5-36 \mathrm{~V}, 0.5 \mathrm{~A}$, NPN open-collector: Error, 1 Motor brake [2A], 3 general-purpose [0.5A]
- Mini USB ${ }^{1}$ \& CAN-bus 2.0B interfaces
- $127 \mathrm{~h} / \mathrm{w}$ addresses selectable by h/w DIP switch
- NTC/PTC analogue Motor Temperature sensor input
${ }^{1}$ Mini USB cable not provided

Name First edition EP January 16, 2018	Document template: P099.TQT.564.0001	Last edition January 16, 2018	Visa :
TECHNOSOFT	Title of document Udrive500 PRODUCT DATA SHEET	$\begin{aligned} & \hline N^{\circ} \text { document } \\ & \text { P030.400.E301.DSH.10A } \end{aligned}$	Page: 1 of 4

Electrical characteristics

All parameters measured under the following conditions (unless otherwise specified):

- $\mathrm{VLOG}=24 \mathrm{VDC} ; \mathrm{VMOT}=48 \mathrm{VDC}$
- Supplies start-up / shutdown sequence: -any-
- Load current (sinusoidal amplitude / continuous BLDC, DC, stepper) $=4 \mathrm{~A}$

Operating Conditions		Min.	Typ.	Max.	Units
Ambient temperature		0		$40^{1,3}$	${ }^{\circ} \mathrm{C}$
Ambient humidity	Non-condensing	0		90	\%Rh
Altitude / pressure ${ }^{2}$	Altitude (vs. sea level)	-0.1	$0 \div 2.5$	${ }^{2}$	Km
	Ambient Pressure	0^{2}	$0.75 \div 1$	10.0	atm
Storage Conditions		Min.	Typ.	Max.	Units
Ambient temperature		-40		105	${ }^{\circ} \mathrm{C}$
Ambient humidity	Non-condensing	0		100	\%Rh
Ambient Pressure		0		10.0	atm
ESD capability (Human body model)	Not powered; applies to any accessible part			± 0.5	kV
	Original packaging			± 15	kV
Mechanical Mounting		Min.	Typ.	Max.	Units
Airflow		natu	conve	${ }^{3}$, c	

${ }^{1}$ Operating temperature at higher temperatures is possible with reduced current and power ratings ${ }^{2}$ Udrive can be operated in vacuum (no altitude restriction), but at altitudes over $2,500 \mathrm{~m}$, current and power rating are reduced due to thermal dissipation efficiency.

Name EP	First edition January 16, 2018	Do
$\boldsymbol{S O}$ TECHNOSOFT	Tiit	

${ }^{3}$ In case of forced cooling (conduction or ventilation) the maximum ambient temperature can be increased substantially.

${ }^{1}$ @20Khz		${ }^{2}$ The digital inputs are software selectable as PNP or NPN		
Name EP	First edition January 16, 2018	Document template: P099.TQT.564.0001	Last edition January 16, 2018	Visa :
	HNOSOF	Title of document Udrive500 PRODUCT DATA SHEET	$\begin{aligned} & \text { No document } \\ & \text { P030.400.E301.DSH.10A } \end{aligned}$	Page: 3 of 4

$\begin{aligned} & \text { Feedback } 1 \text { \&2 inputs (A1+, A1-, B1+, B1-, Z1+, } \\ & \text { Z1-, P+, P-, D+, D- }{ }^{1} \end{aligned}$		Min.	Typ.	Max.	Units
Differential mode compliance	For full RS422 compliance, see ${ }^{2}$	TIA/EIA-422-A			
Input voltage	Hysteresis	± 0.06	± 0.1	± 0.2	V
	Differential mode	-14		+14	
	Common-mode range (A+ to GND, etc.)	-11		+14	
Input impedance, differential			120		Ω
Input frequency	Differential mode	0		10	MHz
Minimum pulse width	Differential mode	50			ns
Analog 0...5V Inputs (REF, FDBK)		Min.	Typ.	Max.	Units
Input voltage	Operational range	0		5	V
	Absolute maximum values, continuous	-16		+23	
	Absolute maximum, surge (duration $\leq 1 \mathrm{~s}$) ${ }^{\dagger}$			± 36	
Input impedance	To GND		15		k Ω
Resolution		12			bits
Integral linearity				± 2	bits
Offset error			± 2	± 10	bits
Gain error			$\pm 1 \%$	$\pm 3 \%$	\% FS ${ }^{2}$
Bandwidth (-3Db)	Software selectable	0		1	kHz
ESD protection	Human body model	± 2			kV

CAN-Bus		Min.	Typ.	Max.	Units
Compliance		ISO11898, CiA-301v4.2 \& 402v3.0			
Bit rate	Software selectable	125		1000	Kbps
Bus length	1Mbps			25	m
	500Kbps			100	
	<250Kbps			250	
Resistor	Between CAN-Hi, CAN-Lo	none on-board			
Node addressing	by hardware through SW1	$1 \div 127 ; 255$ (all bits 0)			
	by software using EasySetup	1- 255 (numbers above 127 will be considered as LSS nonconfigured)			
ESD protection	Human body model	± 15			kV
Supply Output (+5V)		Min.	Typ.	Max.	Units
Output voltage	Current sourced $=250 \mathrm{~mA}$	4.8	5	5.2	V
Output current				500	mA
Short-circuit		Protected			
Over-voltage		Protected			
ESD protection	Human body model	± 15			kV

[^4] conditions for extended periods may affect device reliability.

[^5]2 "FS" stands for "Full Scale"

Name First edition EP January 16, 2018	Document template: P099.TQT.564.0001	Last edition January 16, 2018	Visa :
TECHNOSOFT	Title of document Udrive500 PRODUCT DATA SHEET	$\begin{aligned} & \hline N^{\circ} \text { document } \\ & \text { P030.400.E301.DSH.10A } \end{aligned}$	Page: 4 of 4

All dimensions are in mm; Drawing not to scale.

Motor - sensor configurations					
	PMSM	BLDC	DC BRUSH	$\begin{aligned} & \text { STEP } \\ & \text { (2-ph) } \end{aligned}$	$\begin{aligned} & \text { STEP } \\ & \text { (3-ph) } \end{aligned}$
Incr. Encoder	(J)		(5)	(J)	
Incr. Encoder + Dig. Hall	(3)	(3)			
Digital halls only	(J)				
Tacho			(J)		
Open-loop (no sensor)				(5)	(5)
Open-loop (with step loss detection using incr. enc.)				(3)	(3)
Open-loop (with enc. on load)				(1)	(J)

- Features

- Motion controller and drive in a single compact unit
- Universal solution for control of rotary and linear brushless, brushed and 2 or 3-phase step motors
- CANopen communication protocol (CiA 301v4.2, CiA 305v2.213 and 402v3.0)
- Various modes of operating supported: Position or Speed Profile, interpolated Cyclic Synchronous Position (CSP) mode, external reference mode (Position, Speed, Torque), 35 homing modes
- Motor supply: 11-90V. Logic supply: 9-36V
- Output current: 10A cont. (BLDC mode); 21A ${ }_{\text {PEAK }}$, up to 100 KHz PWM
- 5 opto-isolated digital inputs, $12-36 \mathrm{~V}, \mathrm{PNP} / \mathrm{NPN}$ compatible: 2 for limit switches, 3 general-purpose
- 5 digital outputs, $5-36 \mathrm{~V}, 0.5 \mathrm{~A}$, NPN open-collector: Error, 1 Motor brake [2A], 3 general-purpose [0.5A]
- Mini USB ${ }^{1}$ \& CAN-bus 2.0B interfaces
- $127 \mathrm{~h} / \mathrm{w}$ addresses selectable by h/w DIP switch
- NTC/PTC analogue Motor Temperature sensor input
${ }^{1}$ Mini USB cable not provided

Name First edition EP January 17, 2018	Document template: P099.TQT.564.0001	Last edition January 17, 2018	Visa :
TECHNOSOFT	Title of document Udrive800 PRODUCT DATA SHEET	$\begin{aligned} & \hline N^{\circ} \text { document } \\ & \text { P030.400.E401.DSH.10A } \end{aligned}$	Page: 1 of 4

Electrical characteristics

All parameters measured under the following conditions (unless otherwise specified):

- $\quad \mathrm{VLOG}=24 \mathrm{VDC} ; \mathrm{VMOT}=48 \mathrm{VDC}$
- Supplies start-up / shutdown sequence: -any-
- Load current (sinusoidal amplitude / continuous BLDC, DC, stepper) = 4A

Operating Conditions		Min.	Typ.	Max.	Units
Ambient temperature		0		$40^{1,3}$	${ }^{\circ} \mathrm{C}$
Ambient humidity	Non-condensing	0		90	\%Rh
Altitude / pressure ${ }^{2}$	Altitude (vs. sea level)	-0.1	$0 \div 2.5$	${ }^{2}$	Km
	Ambient Pressure	0^{2}	$0.75 \div 1$	10.0	atm
Storage Conditions		Min.	Typ.	Max.	Units
Ambient temperature		-40		105	${ }^{\circ} \mathrm{C}$
Ambient humidity	Non-condensing	0		100	\%Rh
Ambient Pressure		0		10.0	atm
ESD capability (Human body model)	Not powered; applies to any accessible part			± 0.5	kV
	Original packaging			± 15	kV
Mechanical Mounting		Min.	Typ.	Max.	Units
Airflow		natu	conve	${ }^{3}$, c	

${ }^{1}$ Operating temperature at higher temperatures is possible with reduced current and power ratings ${ }^{2}$ Udrive can be operated in vacuum (no altitude restriction), but at altitudes over $2,500 \mathrm{~m}$, current and power rating are reduced due to thermal dissipation efficiency

Name First edition EP January 17, 2018	Document template: P099.TQT.564.0001	Last edition January 17, 2018	Visa :
TECHNOSOFT	Title of document Udrive800 PRODUCT DATA SHEET	$\begin{array}{ll} \hline \mathrm{N}^{\circ} \text { document } \\ \text { P030.400.E401.DSH.10A } & \\ & \text { Page: } 2 \text { of } 4 \end{array}$	

$\begin{aligned} & \text { Feedback } 1 \text { \&2 inputs (A1+, A1-, B1+, B1-, Z1+, } \\ & \text { Z1-, P+, P-, D+, D- }{ }^{1} \end{aligned}$		Min.	Typ.	Max.	Units
Differential mode compliance	For full RS422 compliance, see ${ }^{2}$	TIA/EIA-422-A			
Input voltage	Hysteresis	± 0.06	± 0.1	± 0.2	V
	Differential mode	-14		+14	
	Common-mode range (A+ to GND, etc.)	-11		+14	
Input impedance, differential			120		Ω
Input frequency	Differential mode	0		10	MHz
Minimum pulse width	Differential mode	50			ns
Analog 0...5V Inputs (REF, FDBK)		Min.	Typ.	Max.	Units
Input voltage	Operational range	0		5	V
	Absolute maximum values, continuous	-16		+23	
	Absolute maximum, surge (duration $\leq 1 \mathrm{~s}$) ${ }^{\dagger}$			± 36	
Input impedance	To GND		15		k Ω
Resolution		12			bits
Integral linearity				± 2	bits
Offset error			± 2	± 10	bits
Gain error			$\pm 1 \%$	$\pm 3 \%$	\% FS ${ }^{2}$
Bandwidth (-3Db)	Software selectable	0		1	kHz
ESD protection	Human body model	± 2			kV

CAN-Bus		Min.	Typ.	Max.	Units
Compliance		ISO11898, CiA-301v4.2 \& 402v3.0			
Bit rate	Software selectable	125		1000	Kbps
Bus length	1Mbps			25	m
	500Kbps			100	
	<250Kbps			250	
Resistor	Between CAN-Hi, CAN-Lo	none on-board			
Node addressing	by hardware through SW1	$1 \div 127 ; 255$ (all bits 0)			
	by software using EasySetup	1- 255 (numbers above 127 will be considered as LSS nonconfigured)			
ESD protection	Human body model	± 15			kV
Supply Output (+5V)		Min.	Typ.	Max.	Units
Output voltage	Current sourced $=500 \mathrm{~mA}$	4.8	5	5.2	V
Output current				500	mA
Short-circuit		Protected			
Over-voltage		Protected			
ESD protection	Human body model	± 15			kV

[^6] conditions for extended periods may affect device reliability.

[^7]2 "FS" stands for "Full Scale"

Name First edition EP January 17, 2018	Document template: P099.TQT.564.0001	Last edition January 17, 2018	Visa :
(5) TECHNOSOFT	Title of document Udrive800 PRODUCT DATA SHEET	$\begin{aligned} & \hline N^{\circ} \text { document } \\ & \text { P030.400.E401.DSH.10A } \end{aligned}$	Page: 4 of 4

[^0]: \dagger Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated

[^1]: ${ }^{1}$ All differential input pins have internal 120Ω termination resistors connected across

[^2]: ${ }^{\dagger}$ Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated

[^3]: ${ }^{1}$ All differential input pins have internal 120Ω termination resistors connected across

[^4]: ${ }^{\dagger}$ Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated

[^5]: ${ }^{1}$ All differential input pins have internal 120Ω termination resistors connected across

[^6]: \dagger Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated

[^7]: ${ }^{1}$ All differential input pins have internal 120Ω termination resistors connected across

